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Introduction
entanyl is a potent synthetic opioid 

widely used in anesthesia and pain 

management due to its rapid onset, high 

potency, and controllable pharmacokinetics 

[1]. Its therapeutic value is paralleled by 

significant challenges related to public health, 

regulatory oversight, and abuse potential [2]. 

The development of fentanyl derivatives 

relies heavily on the strategic use of key 

intermediates, particularly 1-(2-phenylethyl)-

4-piperidinone (PPD), which serves as a 

central hub in various synthetic strategies 

(References available in Table 1). 

Understanding these intermediates is crucial 

not only for efficient pharmaceutical 

production but also for regulatory monitoring, 

analytical characterization, and ensuring 

reproducibility. Reviewing the evolution of 
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PPD-based synthetic strategies provides 

insights into the design principles of opioid 

chemistry, historical developments, and 

emerging trends in process optimization, 

setting the stage for a concise mini-review 

focused on the critical chemical and strategic 

aspects of fentanyl citrate synthesis. 

PPD’s chemical versatility enables multiple 

pathways to fentanyl citrate, encompassing 

both classical multi-step sequences and more 

modern continuous-flow or catalytic 

processes. Each approach offers trade-offs 

between yield, operational simplicity, 

scalability, and control of by-products, 

reflecting broader considerations in active 

pharmaceutical ingredient (API) development 

[3,4]. The design of efficient synthetic routes 

generally requires careful optimization of 

intermediates, reagents, and reaction 

conditions, with attention to safety and 

reproducibility [5]. These principles are 

widely applied across pharmaceutical 

chemistry and have been documented in 

several studies, including process 

optimization and scalable synthesis of various 

APIs [6–10]. By understanding these 

overarching strategies, researchers can 

implement systematic process improvements 

while maintaining compliance with 

regulatory standards and quality control 

requirements. 

Historically, fentanyl synthesis has 

emphasized the modular use of intermediates 

and stepwise transformations to maximize 

yield and control impurities [3-5]. Classical 

approaches typically convert PPD to 4-

anilino-N-phenethylpiperidine (4-APPD) 

before forming the citrate salt, reflecting a 

common theme in medicinal chemistry where 

strategic intermediates facilitate multiple 

derivative pathways [11-13]. Over time, 

efforts to improve efficiency, reduce 

environmental impact, and enhance safety 

have guided the evolution of synthetic routes 

[14,15]. These trends mirror broader 

developments in pharmaceutical process 

chemistry, highlighting the importance of 

reaction optimization, scalable 

methodologies, and analytical 

characterization of intermediates to ensure 

reproducible, high-quality API production. 

Recent innovations, including continuous-

flow techniques and catalytic methods, 

demonstrate enhanced control over reaction 

parameters, scalability, and safety in handling 

intermediates. Such advances not only 

improve operational efficiency but also 

contribute to reproducible and robust 

production processes, which are essential for 

both research and industrial applications.  

This mini-review focuses specifically on 

PPD-derived pathways to fentanyl citrate, 

comparing classical and modern strategies, 

analyzing historical development, and 

highlighting emerging trends. Insights gained 

from these studies may guide future research 

in opioid chemistry and broader API 

synthesis, promoting safer, more efficient, 

and scalable approaches to pharmaceutical 

production. 

 

Key Synthetic Pathways of Fentanyl 

Citrate 

Since the first introduction of fentanyl by 

Janssen et al. (1961–1962), numerous 

laboratory and industrial routes have been 

developed to improve the efficiency, 

selectivity, and environmental profile of its 

synthesis. The classical route involves the 

aminomethylation of 4-piperidone derivatives 

with β-phenethyl chloride under basic 

conditions (Na₂CO₃, KI) in ketone solvents 

such as hexanone, typically affording yields 

of 40–50%. This original process, described 

in US3141823 and FR1517671, established 

the industrial foundation for fentanyl but 

suffered from long reaction times (≈27 h), 

formation of by-products, and purification 

difficulties [11]. 

A significant improvement was achieved by 

Richter et al. (HU157325, 1970), who 

employed copper powder catalysis in 

aromatic solvents (toluene or xylene) with 

sodium carbonate. Their use of 1-(2-

phenylethyl)-4-piperidinone instead of 

unsubstituted piperidones markedly enhanced 

the overall yield to ≈72%, while reducing the 

thermal load and reaction duration [12]. 
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During the late 1970s and 1980s, further 

optimization focused on reducing steps and 

improving selectivity. Jonczyk et al. (1978) 

introduced a two-step reductive pathway 

using NaBH₄ and propionyl chloride, 

achieving around 65% yield, while Brine et al. 

(1989) employed p-toluenesulfonic acid 

catalysis followed by selective reduction to 

obtain purer fentanyl bases [13,14]. 

The early 2000s saw the advent of one-pot and 

reductive amination approaches. Gupta et al. 

(2005) demonstrated a three-step synthesis 

using NaBH(OAc)₃ in acetic media, achieving 

over 40% yield with high selectivity [15]. 

Subsequent advances by Saidi et al. (2010) 

and Watson et al. (2011) introduced Ir- and 

Ru-catalyzed systems under aqueous or 

microwave-assisted conditions (Figure 1), 

reaching yields between 68–77%, marking a 

significant step toward green and efficient 

synthesis [16,17]. 

 

 
Figure 1. Synthesis of fentanyl via N-phenyl-N-(piperidin-4-yl)propionamide as the key intermediate  

After 2014, research emphasized metal 

replacement, catalytic efficiency, and eco-

compatibility. Valdez et al. (2014) achieved 

91–95% yields via mild reductive amination 

using sodium triacetoxyborohydride and 

bulky amines, under ambient conditions [18]. 

Zhang et al. (2016) extended this to high-

pressure palladium-catalyzed systems (yield 

≈96%), while Ghaffarzadeh (2012) developed 

silanol-mediated transformations (yield 

≈86%) [19,20]. Finally, Braga et al. (2022) 

introduced a photocatalytic flow system 

employing [Ru(bpy)₃]Cl₂, 3-

mercaptopropionic acid, and ascorbic acid, 

producing stepwise yields of 84% and 92%. 

This represents the modern pinnacle of 

fentanyl synthesis methodology [21]. 

Overall, the historical development of 

fentanyl citrate synthesis reflects a steady 

evolution from harsh, low-yield conditions 

toward highly selective, environmentally 

friendly methods with near-quantitative 

efficiency (≈95%). 

 

Synthesis Routes from the Intermediate 

PPD (1-(2-phenylethyl)-4-piperidinone) 

The intermediate PPD has emerged as the 

central structural unit for modern fentanyl 

syntheses (Figure 2) since its first use by 

Richter (1970) [12]. Its reactivity and stability 

make it an ideal precursor for reductive 

amination–acylation strategies leading to the 

final N-phenethyl-N-propionamide 

framework. Gupta et al. (2005) [15] and later 

Valdez et al. (2014) [18] exploited PPD to 

construct fentanyl and its citrate salts through 

selective reductive amination. In Valdez’s 

method, NaBH(OAc)₃ achieved yields up to 

95% under mild, scalable conditions (room 

temperature, 2 h) [18].
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Table 1. The key routs for production of fentanyl (especially related to PPD as precursor)  
 

Researcher Year 
Route Type 

(precursor) 
Reagents/ condition 

Conceptual Yield 

(%) 

Janssen [11] 1961-

1962 

4-piperidyl)-

propionanilide 

Na2CO3, KI, hexone, Reflux of 27h 40-50 

Richter et al. [12] 1970 1-(2-phenylethyl)-4-

piperidinone 

Cu powder, Na₂CO₃, toluene/xylene 72 

Jonczyk et al. 

[13] 

1978 4-piperidinone NaBH₄, propionyl chloride, 2-phenethyl bromide 65 

Brine A et al. 

[14] 

1989 1-(2-phenylethyl)-4-

piperidinone 

A: p-toluenesulfonic acid monohydrate, 2) NaBH4 / 

1) toluene, 22 h, reflux, 2) ethanol, rt, 3 h 

B: toluene / 2 h / Heating 

57 

Gupta PK et al. 

[15a] 

2005 PPD A: PhNH2, NaBH(OAc)3, AcOH, 24 hrs 

B: EtCOCl 

More than 40  

Gupta PK et al. 

[15b]  

2009 4-anilinopiperidine acetic acid; zinc / 24 h / 20 - 70 °C More than 60 

 

Saidi O et al. [16] 2010 N-phenyl-N-

(piperidin-4-

yl)propionamide 

[Cp*IrI2]2 In water at 115℃; for 24h; Inert 

atmosphere 

68 

Watson AJA et 

al. [17] 

2011 N-phenyl-N-

(piperidin-4-

yl)propionamide 

[Ru(p-

cymene)Cl2]2; DPEPhos at 115℃; for 1.5h; Inert 

atmosphere; Microwave irradiation; Neat (no 

solvent); 

77 

Ghaffarzadeh et 

al. [20] 

2012 N-(1-

phenethylpiperidin-4-

ylidene) aniline 

triethylsilane; zinc In tetrahydrofuran at 20℃; for 

1h 

86 

Valdez CA et al. 

[18] 

2014 PPD A: acetic acid; sodium tris(acetoxy)borohydride / 

DCM / 2 h / 20 °C / Cooling with ice 

B: N-ethyl-N,N-diisopropylamine / DCM / 2 h / 0 - 

20 °C 

A: 91 

B: 95 

Zhang G et al. 

[19] 

2016 1-phenethyl-N-

phenylpiperidin-4-

amine 

bis(η3-allyl-μ-

chloropalladium(II)); hydroxylamine 

hydrochloride; 4,5-bis(diphenylphosphino)-9,9-

dimethylxanthene at 120℃; for 24h; Autoclave; Hi

gh pressure 

96 

Walz et al. [22] 2017 PPD sodium tetrahydroborate; Dichloroethane ; 24 h, RT 85 

Robertson, et al.  

[23] 

2019 PPD A: sodium tris(acetoxy)borohydride 

B: triethylamine 

A: 91 

B: 33 

Kanamori T et 

al.  [24] 

2021 PPD A: Molecular sieve 

B: sodium tetrahydroborate 

A: 75 

B: 95 

Braga FC et al. 

[21] 

2022 PPD A: [Ru(bpy)3]Cl2.6H2O; 3-mercaptopropionic 

acid; ascorbic acid / methanol / 6 h / 25 °C / Schlenk 

teczInert atmosphere; Flow reactor; Irradiation 

B: N-ethyl-N,N-diisopropylamine / 

dichloromethane / 2 h / 25 °C 

A: 84 

B: 92 

 
Figure 2. Synthesis of fentanyl via PPD as the key intermediate  

 [
 D

ow
nl

oa
de

d 
fr

om
 tb

sr
j.m

az
um

s.
ac

.ir
 o

n 
20

26
-0

2-
20

 ]
 

                               4 / 7

https://creativecommons.org/licenses/by/4.0/
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
https://https-www--reaxys--com.daccess2.com/null
http://tbsrj.mazums.ac.ir/article-1-3892-en.html


PPD to Fentanyl: A Short Review ׀ Siadati et al. 

5 Tabari Bio Stu Res J - Volume 7 - Issue 4   

  

Subsequent work explored various reducing 

agents, including NaBH₄, NaBH(OAc)₃, and 

combinations with molecular sieves. 

Kanamori et al. (2021) reported yields 

ranging from 75–95% by carefully controlling 

reaction moisture and employing sequential 

reduction steps [24]. 

Walz & Hsu (2017) proposed a simplified 

version using only NaBH₄ in 1,2-

dichloroethane (DCE) at ambient 

temperature, with an 85% yield [22]. 

Robertson et al. (2019) later introduced a 

practical two-step approach utilizing 

NaBH(OAc)₃ and Et₃N, giving successive 

yields of 91% and 33%, suitable for mid-scale 

pharmaceutical preparation [23]. 

Finally, the Braga et al. (2022) photocatalytic 

system marked a transformative step. 

Utilizing visible-light catalysis in a 

continuous-flow reactor with [Ru(bpy)₃]Cl₂ 

and ascorbic acid, they achieved stepwise 

yields of 84% and 92%, offering high safety, 

reproducibility, and green scalability [21]. 
 

Discussion 
Over six decades of fentanyl research reveal a 

clear evolution from primitive condensation 

reactions to sophisticated, catalytically 

controlled, and environmentally compliant 

methodologies. Each synthetic era, from 

Janssen’s (1961) early chloride-based 

alkylations to Braga’s (2022) visible-light 

photocatalysis, reflects a deeper 

understanding of mechanistic control and 

kinetic optimization in the construction of the 

piperidinone–amide scaffold. The transition 

from hazardous reagents to selective 

borohydride reductions, transition-metal 

catalysis, and ultimately photo- or flow-

assisted green chemistry demonstrates an 

outstanding example of how synthetic 

strategy has converged toward higher 

efficiency, reproducibility, and safety. 

However, despite these achievements, several 

challenges remain. Current transition-metal 

systems, although efficient, often suffer from 

catalyst recovery difficulties, trace metal 

contamination, and limited recyclability. 

Therefore, the next logical stage in the 

evolution of fentanyl synthesis will likely 

involve superparamagnetic nanocatalysts that 

combine high surface reactivity with facile 

magnetic separation. These hybrid catalysts, 

composed of Fe₃O₄ cores functionalized with 

Ru, Pd, or Ir complexes or even funcionalized 

with organic acids or amines [26can enable 

heterogeneous versions of reductive 

amination, acylation, and hydrogenation 

reactions with minimal waste and complete 

catalyst recovery. 

In principle, superparamagnetic catalysts 

could merge the selectivity of homogeneous 

systems with the recyclability and stability of 

heterogeneous media, significantly reducing 

cost and environmental impact. Furthermore, 

when applied under continuous-flow 

photoreactors, they can provide dynamic 

control over reaction kinetics, enhance photon 

absorption, and minimize side-product 

formation ideal conditions for 

pharmaceutical-grade fentanyl analog 

synthesis. Thus, the future of fentanyl 

chemistry lies in integrating 

superparamagnetic catalysis, green solvents, 

and automated flow technology into one 

sustainable, high-yield platform. Such hybrid 

systems not only promise scalability and 

safety but also align with the next generation 

of intelligent drug manufacturing, where 

reaction optimization, energy efficiency, and 

environmental compatibility become 

inseparable. 
 

Conclusion 

In summary, over the past six decades, 

fentanyl synthesis has evolved from classical 

alkylation of 4-piperidone derivatives to 

highly efficient, selective, and 

environmentally benign methods, including 

borohydride-mediated reductive aminations, 

transition-metal catalysis, and photocatalytic 

flow processes. The introduction of 1-(2-

phenylethyl)-4-piperidinone (PPD) as a key 

intermediate enabled consistently high yields 

and operational simplicity, while modern 

methodologies minimize hazardous reagents 

and improve scalability. Looking forward, 

superparamagnetic nanocatalysts offer a 

promising avenue to combine the selectivity 

of homogeneous catalysis with the 
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recyclability and stability of heterogeneous 

systems, particularly in continuous-flow and 

photochemical setups. Such innovations 

could establish a sustainable, high-yield 

platform for pharmaceutical-grade fentanyl 

and related analogues, aligning synthetic 

efficiency with environmental and 

operational safety. 
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